ON THE APPLIOATION OR GENRRAL
 VARIATIONAL PRINCIPLES IN THE
 RELATIVISTIO NEOHANIOS OF AN IDEAL PLUID

PMM Vol.29, № 1, 1965, pp. 18-25
V.Ts.GUROVICH and K.P.STANIUKOVICH
(Moscow)
(Received May 6, 1964)

Equations describing the motion of a continuous conducting medium in prescribed electromagnetic and gravitational fields are obtained most simply by variation of the appropriate Lagrangians.

As a result, the variational principle leads to a second order scalar equation; this affoeds significant advantages in the analysis of the motion of a medium as compared with the analysis of the customary equations of momen. tum, mass and energy conservation.

The Lagrangian of an electromagnetic field is well known to have the form [1]:

$$
\begin{equation*}
L_{e}=-F_{i k} F^{i k} / 16 \pi, \quad F_{i k}=\partial A_{k} / \partial x^{i}-\partial A_{i} / \partial x^{k} \tag{0.1}
\end{equation*}
$$

Here $F_{1 k}$ and A_{1} are the tensor and quadri-potential of the electromagnetic field.

We have for the Lagrangian of a continuum in the case of isentropic quasipotential flow [2]

$$
\begin{equation*}
L_{m}=p=(w-E) / v=\left[c \sqrt{-g^{i k} S_{i} S_{k}}-E\right] / v \tag{0.2}
\end{equation*}
$$

Here S is the effect for matter, E ise mass energy density, v the specific volume, p the pressure, w the heat content, $\theta_{1 \times}$ the metric tensor components; furthermore

$$
\begin{equation*}
S_{i}=\partial S / \partial x^{i}, \quad c S_{i}=w u_{i} \tag{0.3}
\end{equation*}
$$

where c is the velocity of light, u_{1} the quadri-velocity.
We will seek the equation of motion for the established form of the Lagrangian for a continuum exactly as for the field

$$
\begin{equation*}
\frac{\partial}{\partial S}\left(\sqrt{-g} L_{m}\right)-\frac{\partial}{\partial x^{k}} \frac{\partial\left(\sqrt{-g} L_{m}\right)}{\partial S_{k}}=0 \tag{0.4}
\end{equation*}
$$

where θ is the determinant of the metric tensor $\theta_{1 k}$. In the case when an electromagnetic field is present, it is necessary to replace os, by $w u_{i}+(e / m) A_{i}$, after the evaluation of the derivatives, where (e / m) is the mean ratio of the particle charge to the mass.

If there is no electromagnetic field, we obtain the continuity equation

$$
\begin{equation*}
\frac{\partial}{\partial x^{k}} \frac{\sqrt{-g} S^{k}}{v w}=0 \quad \text { or } \quad \frac{\partial}{\partial x^{k}} \frac{\sqrt{-g} u^{k}}{v}=0 \tag{0.5}
\end{equation*}
$$

by substituting (0.2) into (0.4).
Since $v \sim\left(w-\alpha c^{2}\right)^{-1 /(k-1)}$ for $p v^{k}=$ const, then (0.2) may be written as

$$
\begin{equation*}
L_{m}=p=\mathrm{const}\left[-\alpha c+\sqrt{-g^{i k} S_{i} S_{k}}\right]^{\frac{k}{k-1}} \tag{0.6}
\end{equation*}
$$

Analogously, a more complex equation is hence obtained from (0.4)

$$
\begin{equation*}
\frac{\partial}{\partial x^{n}}\left[\frac{\sqrt{-g} S^{n}}{\sqrt{-S_{l} S^{l}}}\left(\sqrt{-S_{l} S^{l}}-\alpha_{c}\right)^{\frac{1}{k-1}}\right]=0 \tag{0.7}
\end{equation*}
$$

However, it is convenient to use the sound equation instead of (0.7).
To obtain this latter, let us write (0.5) as

$$
\begin{equation*}
\frac{S^{n}}{v w} \frac{\partial \ln \sqrt{-g}}{\partial x^{n}}+\frac{\partial\left(S^{n} / v w\right)}{\partial x^{n}}=0 \tag{0.8}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{d \ln w}{d \ln v}=-\frac{\omega^{2}}{c^{2}} \tag{0.9}
\end{equation*}
$$

where ω is the relativistic velocity of sound, we then find from (0.8)

$$
\begin{equation*}
2 \frac{\omega^{2}}{c^{2}}\left(S_{n} S^{n}\right)\left(S_{l}^{l}+S^{l} \frac{\partial \ln \sqrt{-g}}{\partial x^{l}}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right) S^{l}\left(\frac{\partial S_{n}}{\partial x^{l}} S^{n}+\frac{\partial S^{n}}{\partial x^{l}} S_{n}\right)=0 \tag{0.10}
\end{equation*}
$$

Equation (0.10) will be the original in the analysis of different examples of the motion of a relativ stic medium in the special theory of relativity (Section 1) and the spherically symmetrical motion in a Schwarzschild gravitational field (Section 2). It is investigated by the method of characteristics.

It is convenient to use (0.10) even in the absence of a gravitational field if the calculations are carried out in any curvilinear coordinate system.

1. As examples of the utilization of (0.10), let us consiser one-dimensional nonstationary waves (R1emann waves) and two-dimensional plane stationary gas flow.

Let us use a Galilean metric for the mentioned problems
$d s^{2}=c^{2} d t^{2}-\left(d x^{\alpha}\right)^{2}, \quad-g_{00}=g_{11}=g_{22}=g_{33}=1 \quad(\alpha=1,2,3)(1.1)$
For the chosen metric $\partial \ln \sqrt{-g} / \partial x^{l}=0$ and from (0.10) we have

$$
\begin{equation*}
2 \frac{\omega^{2}}{c^{2}} S_{l}^{l}\left(S_{k} S^{k}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right) S^{l}\left[\frac{\partial S_{k}}{\partial x^{l}} S^{k}+\frac{\partial S^{k}}{\partial x^{l}} S_{k}\right]=0 \tag{1.2}
\end{equation*}
$$

In the one-dimensional unsteady flow case $2, \hbar=0,1$, in which $S_{1}=S^{1}$ and $S_{0}=-S^{0}$ for the chosen metric. Hence, after elementary manipulations, we find from (1.2)

$$
\frac{\omega^{2}}{c^{2}}\left(S_{11}-S_{00}\right)\left(S_{1}^{2}-S_{0}^{2}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(S_{0}^{2} S_{00}-2 S_{0} S_{1} S_{01}+S_{1}^{2} S_{11}\right)=0
$$

Since

$$
S_{11}=\partial S_{1} / \partial x, \quad S_{00}=\partial S_{0} / \partial \tau, \quad \tau=c t
$$

we then find from the latter equation
$\frac{\omega^{2}}{\boldsymbol{c}^{2}}\left(\frac{\partial S_{1}}{\partial x}-\frac{\partial S_{0}}{\partial \tau}\right)\left(S_{1}{ }^{2}-S_{0}{ }^{2}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(S_{0}{ }^{2} \frac{\partial S_{0}}{\partial \tau}-2 S_{0} S_{1} \frac{\partial S_{1}}{\partial \tau}+S_{1}{ }^{2} \frac{\partial S_{1}}{\partial x}\right)=0$
Using a known method of change of variables, we can transform to a linear equation from (1.3). To do this, let us divide (1.3) by the Jacobian $\partial\left(S_{0}, S_{1}\right) / \partial(\tau, x)$, by first assuming it to be different from zero.

Hence we obtain
$\frac{\omega^{2}}{c^{2}}\left(\frac{\partial \tau}{\partial S_{3}}-\frac{\partial x}{\partial S_{1}}\right)\left(S_{1}^{2}-S_{0}^{2}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(S_{0}{ }^{2} \frac{\partial x}{\partial S_{1}}+2 S_{0} S_{1} \frac{\partial \tau}{\partial S_{1}}+S_{1}{ }^{2} \frac{\partial \tau}{\partial S_{0}}\right)=0$
The effect S ia a quasi-potential [2], hence $\partial S_{0} / \partial x=\partial S_{1} / \partial \tau$. This equality may be written in the form of an equality of Jacobians, which will yield after having been divided by $\partial\left(S_{0}, S_{1}\right) / \partial(\tau, x)$

$$
\begin{equation*}
-\frac{\partial \tau}{\partial S_{1}}=\frac{\partial x}{\partial S_{0}} \tag{1.5}
\end{equation*}
$$

For the sequel it is expedient to introduce a fuaction ψ such that

$$
\begin{equation*}
\tau=\partial \Psi / \partial S_{0}=\Psi_{0}, \quad x=\partial \Psi / \partial S_{1}=\Psi_{1} \tag{1.6}
\end{equation*}
$$

Then (1.4) will become
$\frac{\omega^{2}}{c^{2}}\left(\Psi_{00}-\Psi_{11}\right)\left(S_{1}^{2}-S_{0}^{2}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(S_{0}^{2} \Psi_{11}+S_{1}^{2} \Psi_{00}+2 S_{0} S_{1} \Psi_{01}\right)=0$
In case the Jacobian $\partial\left(S_{0}, S_{1}\right) / \partial(\tau, x)$ equals zero, the change of vari. ables in (1.3) is impossible. However, the very fact that the Jacobian is zeo means that $S_{0}=f\left(S_{1}\right)$. Hence

$$
\frac{\partial\left(S_{1}, S_{0}\right)}{\partial(x, \tau)}=\frac{\partial S_{1}}{\partial x} \frac{\partial S_{0}}{\partial \tau}-\frac{\partial S_{1}}{\partial \tau} \frac{\partial S_{0}}{\partial x}=0
$$

which becomes, by virtue of the equality $\partial S_{0} / \partial x=\partial S_{1} / \partial \tau$

$$
\begin{equation*}
\frac{d S_{0}}{d S_{1}} \frac{\partial S_{1}}{\partial x}-\frac{\partial S_{1}}{\partial \tau}=0 \tag{1.8}
\end{equation*}
$$

The solution of the latter equation is

$$
\begin{equation*}
x+\tau d S_{0} / d S_{1}=F\left(S_{1}\right) \tag{1.9}
\end{equation*}
$$

where $F\left(S_{1}\right)$ is an arbitrary function of S_{1} determined from the boundary conditions. In order to determine the form of the function $S_{0}=f\left(S_{1}\right)$, let us use the equalities

$$
\frac{\partial S_{0}}{\partial x}=\frac{d S_{0}}{d S_{1}} \frac{\partial S_{1}}{\partial x}, \quad \frac{\partial S_{0}}{\partial \tau}=\frac{d S_{0}}{d S_{1}} \frac{\partial S_{1}}{\partial \tau}
$$

to help us find from (1.3)

$$
\begin{gathered}
\frac{\partial S_{1}}{\partial x}\left[\frac{\omega^{2}}{c^{2}}\left(S_{1}^{2}-S_{0}^{2}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right) S_{1}^{2}\right]+\frac{\partial S_{1}}{\partial \tau}\left[\left(1-\frac{\omega^{2}}{c^{2}}\right) S_{0}^{2} \frac{d S_{0}}{d S_{1}}-\right. \\
\left.-\frac{\omega^{2}}{c^{2}} \frac{d S_{0}}{d S_{1}}\left(S_{1}^{2}-S_{0}^{2}\right)-2 S_{0} S_{1}\left(1-\frac{\omega^{2}}{c^{2}}\right)\right]=0
\end{gathered}
$$

Hence, taking (1.8) into account, we obtain an equation to determine S_{0} as a function of S_{1}

$$
\begin{equation*}
\left(\frac{d S_{0}}{d S_{1}}\right)^{2}\left(S_{1}^{2}-S_{0}^{2} \frac{c^{2}}{\omega^{2}}\right)+2\left(\frac{c^{2}}{\omega^{2}}-1\right) S_{1} S_{0} \frac{d S_{0}}{d S_{1}}+\left(S_{0}^{2}-\frac{c^{2}}{\omega^{2}} S_{1}^{2}\right)=0 \tag{1.10}
\end{equation*}
$$

Before solving (1.10), let us examine the equation of plane stationary flow of a relativistic gas. In form, this latter will agree with the equations for one-dimensional unsteady flow. Writing these equations jointly, let us seek the general solution of the problems under consideration.

As is known, the action function in the case of stationary flow may be written thus

$$
\begin{equation*}
S=-w_{0} t+S\left(x^{\propto}\right) \tag{1.11}
\end{equation*}
$$

Here $a_{1, z}$ are the components of the conventional velocity

$$
\begin{gather*}
c S_{0}=-w_{0}=-w / \theta, \quad S_{1}=w_{0} a_{1} / c^{2}, \quad S_{2}=w_{0} a_{2} / c^{2} \\
\theta=\sqrt{1-a^{2} / c^{2}} \tag{1.12}
\end{gather*}
$$

Substituting (1.11) into (1.2) and taking into account that (see (1.12))

$$
S_{0}^{\circ}=-S_{00}=0, \quad S_{1}=S^{1}, S_{2}=S^{2}, \quad S_{0} S^{\circ}=-S_{0}^{2}=-w_{0}^{2} / c^{2}
$$

we find the equation for plane stationary flow

$$
\begin{gather*}
\frac{\omega^{2}}{c^{2}}\left(\frac{\partial S_{1}}{\partial x}+\frac{\partial S_{2}}{\partial y}\right)\left(S_{1}^{2}+S_{2}^{2}-\frac{w_{0}^{2}}{c^{2}}\right)+ \\
+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(\frac{\partial S_{1}}{\partial x} S_{1}^{2}+\frac{\partial S_{2}}{\partial y} S_{2}^{2}+2 S_{1} S_{2} \frac{\partial S_{2}}{\partial x}\right)=0 \tag{1.13}
\end{gather*}
$$

Here we use the equality

$$
\begin{equation*}
\partial S_{2} / \partial x=\partial S_{1} / \partial y \tag{1.14}
\end{equation*}
$$

Changing the variables in (1.13) and introducing the function Ψ by virtue of (1.14) so that $x=\partial \Psi / \partial S_{1}=\Psi_{1}, y=\partial \Psi / \partial S_{2}=\Psi_{2}$, we obtain

$$
\begin{gather*}
\frac{\omega^{2}}{c^{2}}\left(\Psi_{22}+\Psi_{11}\right)\left(S_{1}^{2}+S_{2}^{2}-\frac{w_{0}^{2}}{c^{2}}\right)+ \\
+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(S_{1}^{2} \Psi_{22}+S_{2}^{2} \Psi_{11}-2 S_{1} S_{2} \Psi_{12}\right)=0 \tag{1.15}
\end{gather*}
$$

If the Jacobian $\partial\left(S_{1}, S_{2}\right) / \partial(x, y)=0$, the change of variables in (1.13) is impossible. Then, just as in the case considered earlier, we have

$$
\begin{equation*}
x+y d S_{2} / d S_{1}=F\left(S_{1}\right) \tag{1.16}
\end{equation*}
$$

and the function $S_{z}=f\left(S_{1}\right)$ is found from Equation

$$
\begin{gather*}
\left(\frac{d S_{2}}{d S_{1}}\right)^{2}\left(S_{1}^{2}+\frac{c^{2}}{\omega^{2}} S_{2}^{2}-\frac{w_{0}^{2}}{c^{2}}\right)+2 S_{1} S_{2}\left(\frac{c^{2}}{\omega^{2}}-1\right) \frac{d S_{2}}{d S_{1}}+ \\
+\left(S_{2}^{2}+\frac{c^{2}}{\omega^{2}} S_{1}^{2}-\frac{w_{0}^{2}}{c^{2}}\right)=0 \tag{1.17}
\end{gather*}
$$

Now, the equations for one-dimensional unsteady (1.7) and two-dimensional stationary flow (1.15) may be written as one equation

$$
\begin{gather*}
\frac{\omega^{2}}{c^{2}}\left(\Psi_{\beta \beta} \pm \Psi_{11}\right)\left(S_{1}^{2} \pm S_{\beta}^{2}-\frac{\beta}{2} \frac{w_{0}^{2}}{c^{2}}\right)+ \\
+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(S_{1}^{2} \Psi_{\beta \beta}+S_{\beta}^{2} \Psi_{11} \mp 2 S_{1} S_{\beta} \Psi_{1 \beta}\right)=0 \tag{1.18}
\end{gather*}
$$

The upper signs in (1.18) correspond to plane stationary flow when $\rho=\varepsilon$, $x_{\beta}=y, S_{\beta}=S_{2}$, the lower signs to one-dimensional unsteady flow when $\beta=0, x_{0}=\tau ; S_{\beta}=S_{0}$.

Furthermore, let us introduce the notation (see (1.12))

$$
\begin{equation*}
S_{1}^{2}+S_{2}^{2}=w_{0}^{2}\left(a_{1}^{2}+a_{2}^{2}\right) / c^{4}=w_{0}^{2} a^{2} / c^{4}=c^{2} z^{2} \tag{1.19}
\end{equation*}
$$

where $z=w_{0}|a| / c^{3}$.
It is now expedient to introduce the following substitutions for (1.18):
$S_{1}=c z \sin \varphi, \quad \frac{S_{1}}{S_{2}}=\frac{a_{1}}{a_{2}}=\tan \varphi \quad(\beta=2), ~$
$S_{0}=-c z \cosh \varphi, \quad-\frac{S_{1}}{S_{0}}=\frac{a}{c}=\tanh \varphi, \quad \frac{w^{2}}{c^{2}}=S_{1}^{2}-S_{0}{ }^{2}=c^{2} z^{2} \quad(\beta=0)$
$S_{1}=c z \sinh \varphi, \quad$
In the new variables (1.20) Equation (1.18) becomes

$$
\begin{equation*}
\frac{\omega^{2}}{c^{2}} z^{2} \Psi_{z z}+z \Psi_{z} \pm \Psi_{\varphi \varphi}=\frac{\beta}{2} \frac{\omega^{2}}{z^{2} c^{2}}\left(\frac{w_{0}}{c^{2}}\right)^{2}\left(\Psi_{z z} z^{2}+\Psi_{z} z \pm \Psi_{\varphi \varphi}\right) \tag{1.21}
\end{equation*}
$$

in which

$$
\begin{array}{ll}
x=\Psi_{z} \sin \varphi+\Psi_{\varphi} \cos \varphi / z, & y=\Psi_{z} \cos \varphi-\Psi_{\varphi} \sin \varphi / z \quad(\beta=2) \\
x=-\Psi_{z} \sinh \varphi+\Psi_{\varphi} \cosh \varphi / z, & \tau=-\Psi_{z} \cosh \varphi+\Psi_{\varphi} \sinh \varphi / z \quad(\beta=0)
\end{array}
$$

Equation (1.21) is simplified considerably by the substitution $\xi=\ln z$

$$
\begin{equation*}
\frac{\omega^{2}}{c^{2}} \Psi_{\xi \xi}+\left(1-\frac{\omega^{2}}{c^{2}}\right) \Psi_{\xi}+\Psi_{\varphi \varphi}=\frac{\beta}{2 z^{2}} \frac{\omega^{2}}{c^{2}}\left(\frac{w_{0}}{c^{2}}\right)^{2}\left(\Psi_{\xi \xi} \pm \Psi_{\varphi \varphi}\right) \tag{1.22}
\end{equation*}
$$

Equation (1.22) may be solved by the method of characteristics.
Let us now turn to seeking the singular solutions of the joint equation of the two problems under comsideration. Combining (1.10) and (1.17) we obtain

$$
\begin{gather*}
\left(\frac{d S_{\beta}}{d S_{1}}\right)^{2}\left[S_{1}^{2} \pm\left(\frac{c^{2}}{\omega^{2}} S_{\beta}^{2}-\frac{\beta}{2} \frac{\omega_{0}^{2}}{c^{2}}\right)\right]+2 S_{1} S_{\beta}\left(\frac{c^{2}}{\omega^{2}}-1\right) \frac{d S_{\beta}}{d S_{1}}+ \\
+\left[S_{\beta}^{2} \pm\left(\frac{c^{2}}{\omega^{2}} S_{1}^{2}-\frac{\beta}{2} \frac{w_{0}^{2}}{c^{2}}\right)\right]=0 \tag{1.23}
\end{gather*}
$$

Finding the roots of the square of the derivative $d S_{\beta} / d S_{1}$ in (1.23), we find in the case $\beta=0$ and $c S_{0}=-w / \theta, c S_{1}=w a / c \theta$

$$
\begin{equation*}
-\frac{d S_{0}}{d S_{1}}=\frac{a / c \pm \omega / c}{1 \pm a \omega / c^{2}} \tag{1.24}
\end{equation*}
$$

Substituting the result obtained into (1.9), we have

$$
\begin{equation*}
x=\frac{a / c \pm \omega / c}{1 \pm a \omega / c^{2}}+F(a) \tag{1.25}
\end{equation*}
$$

which, as is known, is the equation of relativistic Riamann waves.
According to (1.12), we have from (1.23) for $B=2$

$$
\begin{equation*}
\frac{d S_{2}}{d S_{1}}=\frac{d a_{y}}{d a_{x}}=\left\{-\frac{a_{x} a_{y}}{c^{4}}\left(\frac{c^{2}}{\omega^{2}}-1\right) \pm\left[\left(1-\frac{a^{2}}{c^{2}}\right)\left(\frac{a^{2}}{\omega^{2}}-1\right)\right]^{1 / 2}\right\}\left(\frac{a_{x}^{2}}{c^{2}}+\frac{a_{y}^{2}}{\omega^{2}}-1\right)^{-1} \tag{1.26}
\end{equation*}
$$

Here it is assumed that $|a|>\omega$
Since $\omega=\omega(w)=\omega\left(\theta w_{0}\right)=\omega(a)$, we can determine a_{y} as a function of a_{x} from (1.26). Substituting the found function $d a_{y} / d a_{x}=B\left(a_{x}\right)$ into (1.16), we find the solution for generalized Prandtl-Mayer flow

$$
\begin{equation*}
x+y B\left(a_{x}\right)=F\left(a_{x}\right) \tag{1.27}
\end{equation*}
$$

In conclusion, let us show how the transition from (1.21) to the customary (nonrelativistic) equation for gas flows is accomplished.

In the $\beta=0$ case we have from (1.21)

$$
\begin{equation*}
\frac{\omega^{2}}{c^{2}} z^{2} \Psi_{z z}+z \Psi_{z}=\Psi_{\varphi \varphi} \tag{1.28}
\end{equation*}
$$

In the case of nonrelativistic gas flow we have

$$
\begin{gather*}
z=w / c^{2}=1+i / c^{2}, \quad \varphi=\operatorname{Ar} \tanh a / c \\
d z=\dot{d i} / c^{2}, \quad d \varphi \approx d(a / c) \quad(a \ll c) \tag{1.29}
\end{gather*}
$$

Taking account of (1.29), let us write (1.28) as

$$
\omega^{2} c^{2}\left(1+2 i / c^{2}\right) \Psi_{i i}+\left(1+i / c^{2}\right) c^{2} \Psi_{i}=c^{2} \Psi_{a a}
$$

Hence, as $c \rightarrow \infty$ we have the well-known Riemann equation

$$
\begin{equation*}
\omega^{2} \Psi_{i i}+\Psi_{i}=\Psi_{a a} \tag{1.30}
\end{equation*}
$$

whose singular solution is

$$
\begin{equation*}
x=(a \pm \omega) t+F(a), \quad d a \pm \omega d \ln v=0 \tag{1.31}
\end{equation*}
$$

In the $\beta=2$ case we have from (1.21)

$$
\begin{equation*}
\frac{\omega^{2}}{c^{2}} \Psi_{z z} z^{2}+\Psi_{z} z+\Psi_{\varphi \varphi}=\frac{\omega^{2}}{z^{2} c^{2}}\left(\frac{w_{0}}{c^{2}}\right)^{2}\left(\Psi_{z z} z^{2}+\Psi_{z} z+\Psi_{\varphi \varphi}\right) \tag{1.32}
\end{equation*}
$$

Since $w_{0} / c^{2} \approx 1$ for $a \ll c$ it then follows from (1.19) that $z \approx a / c$.
Using the mentioned limiting values for w_{0} and z, we obtain the known equation describing stationary gas flow from (1.32).

$$
\begin{equation*}
\left(\Psi_{a} a+\Psi_{\varphi \varphi}\right)\left(1-\omega^{2} / a^{2}\right)=\omega^{2} \Psi_{a a} \tag{1.33}
\end{equation*}
$$

For $a \ll c$ we have from (1.26)

$$
\begin{equation*}
d a_{y} / d a_{x}=\left(-a_{x} a_{y} \pm \omega \sqrt{a^{2}-\omega^{2}}\right) /\left(a_{y}^{2}-\omega^{2}\right) \tag{1.34}
\end{equation*}
$$

Substituting (1.34) into (1.27) and assuming $F\left(a_{x}\right)=0$, we obtain the Prandtl-Mayer solution

$$
\begin{equation*}
x / y=-d a_{y} / d a_{x}=\left(a_{x} a_{y} \mp \omega \vee \overline{a^{2}-\omega^{2}}\right) /\left(a_{y}^{2}-\omega^{2}\right) \tag{1.35}
\end{equation*}
$$

2. The space-time interval in the Schwarzschild gravitational field may be written as

$$
\begin{equation*}
d s=\left(1-\frac{r_{0}}{r}\right) c^{2} d t^{2}-\frac{d r^{2}}{1-r_{0} / r}-r^{2}\left(\sin ^{2} \theta d \varphi^{2}+d \theta^{2}\right) \tag{2.1}
\end{equation*}
$$

1.e. the components of the metric tensor are [1]

$$
\begin{array}{rll}
g_{00}=-\left(1-r_{0} / r\right), & g_{22}=r^{2} \\
g_{11}=\left(1-r_{0} / r\right)^{-1}, & g_{33}=r^{2} \sin ^{2} \theta \tag{2.2}
\end{array}
$$

To obtain the equation of motion, let us again use (0.10) in which it should be taken into account that
then we will have

$$
S_{l}^{l}=\frac{\partial}{\partial x^{l}}\left(g^{i l} S_{i}\right)
$$

$$
\begin{gather*}
\frac{\omega^{2}}{c^{2}}\left[S_{1}^{2}\left(1-\frac{r_{0}}{r}\right)-\frac{S_{0}{ }^{2}}{1-r_{0} / r}\right]\left[S_{11}\left(1-\frac{r_{0}}{r}\right)-\frac{S_{00}}{1-r_{0} / r}+\frac{2 S_{1}}{r}\left(1-\frac{r_{0}}{r}\right)\right]+ \\
+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left\{S_{11} S_{1}\left(1-\frac{r_{0}}{r}\right)^{2}-2 S_{0} S_{1} S_{10}+\frac{S_{0}{ }^{2} S_{00}}{\left(1-r_{0} / r\right)^{2}}+\frac{S_{1}\left(1-r_{0} / r\right) r_{0}}{2 r^{2}} \times\right. \\
\left.\times\left[S_{1}^{2}+\frac{S_{0}{ }^{2}}{\left(1-r_{0} / r\right)^{2}}\right]\right\}=0 \tag{2.3}\\
S_{11}=\frac{\partial}{\partial r} S_{1}, \quad S_{00}=\frac{\partial}{\partial x^{\circ}} S_{0}, \quad c S_{1}=w u_{1}, \quad c S_{0}=w u_{0}
\end{gather*}
$$

Here w_{0} is the relativistic heat content, u_{1} the quadri-velocity. The quantity r_{0} is the gravitational radius of the mass producing the gravitational field. To simplify (2.3), let us introduce the new independent variable

$$
\begin{equation*}
d \xi=d r /\left(1-r_{0} / r\right) \tag{2.4}
\end{equation*}
$$

Then

$$
\left(1-\frac{r_{0}}{r}\right) S_{1}=S_{\xi}, \quad\left(1-\frac{r_{0}}{r}\right)^{2} S_{11}=S_{\xi \xi}-\frac{r_{0}}{r^{2}} S_{\xi}
$$

After elementary manipulations, (2.3) takes the form

$$
\begin{gather*}
\frac{\omega^{2}}{c^{2}}\left(S_{\xi}^{2}-S_{0}^{2}\right)\left(S_{\xi \xi}-S_{00}\right)+\left(1-\frac{\omega^{2}}{c^{2}}\right)\left(S_{\xi \xi} S_{\xi}^{2}-2 S_{0} S_{\xi} S_{0 \xi}+S_{00} S_{0}^{2}\right)+ \\
+\frac{2 S_{\xi}}{r}\left(S_{\xi}^{2}-S_{0}^{2}\right)\left[\frac{\omega^{2}}{c^{2}}-\left(1+3 \frac{\omega^{2}}{c^{2}}\right) \frac{r_{0}}{4 r}\right]=0 \tag{2.5}
\end{gather*}
$$

This equation may easily be investigated by using characteristics which have the form

$$
\begin{equation*}
\xi^{\bullet 2}\left(\frac{\omega^{2}}{c^{2}} B^{2}-A^{2}\right)-2 \xi^{\cdot} A B\left(1-\frac{\omega^{2}}{c^{2}}\right)-\left(B^{2}-A^{2} \frac{\omega^{2}}{c^{2}}\right)=0 \tag{2.6}
\end{equation*}
$$

and the condition on the characteristics

$$
\begin{equation*}
A^{\cdot} \xi \cdot\left(\frac{\omega^{2}}{c^{2}} B^{2}-A^{2}\right)+D \xi=B^{\cdot}\left(B^{2}-A^{2} \frac{\omega^{2}}{c^{2}}\right) \tag{2.7}
\end{equation*}
$$

Here

$$
A=S_{0}, \quad B=S_{\xi}, \quad D=\frac{2 B}{r}\left(B^{2}-A^{2}\right)\left[\left(1+3 \frac{\omega^{2}}{c^{2}}\right) \frac{r_{0}}{4 r}-\frac{\omega^{2}}{c^{2}}\right]
$$

and the dot denotes the total derivative with respect to time $x^{0}=0 t$.
Let us transform (2.6) and (2.7) to a form similar to the analogous expres. sions for the characteristics and the condition on them in the special theory of relativity.

To do this, let us write A and B as

$$
\begin{gather*}
A=S_{0}=g_{00} u^{\circ} w / c=-w^{*} / c \theta \\
B=S_{\xi}=\left(1-r_{0} / r\right) S_{1}=\left(1-r_{0} / r\right) g_{11} w u^{1} / c=w^{*} a / c^{2} \theta \tag{2.8}
\end{gather*}
$$

Here

$$
\begin{equation*}
\theta=\sqrt{1-a^{2} / c^{2}}, \quad w^{*}=\sqrt{1-r_{0} / r w}, \quad a=\sqrt{v_{1} v^{1}} \tag{2.9}
\end{equation*}
$$

and v^{1} is the conventional velocity measured in intrinsic time [1]. Using (2.8) we find from the equation of the characteristics (2.6)

$$
\begin{equation*}
\frac{d \xi}{d x^{\circ}}=\frac{a / c \pm \omega / c}{1 \pm \omega a / c^{2}} \tag{2.10}
\end{equation*}
$$

The fundamental effect of the approximation in the Schwarzschild sphere is seen from the obtained relationship. In fact, for gas moving to the center $(a \rightarrow-a)$ we find from (2.10)

$$
\xi-\xi^{\prime}=\left(r-r^{\prime}\right)+r_{0} \ln \left(\frac{r-r_{0}}{r^{\prime}-r_{0}}\right)=-\int_{x_{0}^{\prime}}^{x_{0}} \frac{a / c \pm \omega / c}{1 \pm \omega a / c^{2}} d x^{\circ}
$$

where r^{\prime} is the value of the coordinate at the time $x_{0}{ }^{\prime}=$ ot .
Because of the finiteness of the integrand, we have that

$$
t \approx-\frac{r_{0}}{c} \ln \left|\frac{r}{r_{0}}-1\right| \rightarrow \infty \quad \text { for } r \rightarrow r_{0}
$$

This latter means that any perturbation being propagated along characteristics reaches the Schwarzchild sphere in a time which is infinite for the external observer.

Using (2.8) to (2.10) the condition on the characteristics (2.7) becomes

$$
\begin{equation*}
\frac{d}{d t} \ln w^{*}-\frac{2 a}{\left(1 \pm \omega a / c^{2}\right) r}\left[\left(1+3 \frac{\omega^{2}}{c^{2}}\right) \frac{r_{0}}{4 r}-\frac{\omega^{2}}{c^{2}}\right] \pm \frac{1}{\theta^{2}} \frac{\omega}{c} \frac{d}{d t}\left(\frac{a}{c}\right)=0 \tag{2.11}
\end{equation*}
$$

These conditions hold along the characteristics (2.10)
Hence, the solution of the equations describing the gas motion is not difficult by the method of characteristics in the Schwarzchild field.

By passing to the limit in (2.10) and (2.11) we arrive at the equation of motion of a nonrelativistic gas in a gravity field. To do this, let us note that

$$
\frac{d \ln w^{*}}{d t}=\frac{d \ln w}{d t}+\frac{1}{2} \frac{d \ln \left(1-\boldsymbol{r}_{0} / r\right)}{d t}, \quad \frac{d \ln w}{a \ln v}=-\frac{\omega^{2}}{c^{2}}
$$

Then the equation of the characteristics (2.10) takes the form $\dot{r}=a \pm w$ and the condition on the characteristics becomes [3]

$$
d a \pm(2 \mathrm{a} \omega d t / r-\omega d \ln v)-g d t=0, \quad g=-k M / r^{2}
$$

Here v is the srecific volume; ω is the velocity of sound and a the acceleration due to gravity.

BIBLIOGRAPHY

1. Landau, L.D. and Lifshits, E.M., Teoriia polia (Field Theory). Fizmatgiz, 1960.
2. Staniukovich, K.P., Lagranzhian sploshnoi sredy v rimanovom prostranstve (Lagrangian of a continuum in Riemann space). Dokl.Akad.Nauk SSSR, Vol. 154, Ne 2, 1964.
3. Staniukovich, K.P., Neustanovivshiesia dvizhenila sploshnoi sredy (Unsteady Motion of a Continuum). Gostekhizdat, 1955.
